Processing math: 100%
+ - 0:00:00
Notes for current slide
Notes for next slide

In-person
session 9

March 10, 2022

PMAP 8521: Program evaluation
Andrew Young School of Policy Studies

1 / 32

Plan for today

2 / 32

Plan for today

General questions

2 / 32

Plan for today

General questions

Final project

2 / 32

Plan for today

General questions

Final project

Simple diff-in-diff

2 / 32

Plan for today

General questions

Final project

Simple diff-in-diff

Two-way fixed effects

2 / 32

Plan for today

General questions

Final project

Simple diff-in-diff

Two-way fixed effects

Sensitivity analysis

2 / 32

General questions

3 / 32

Should we control for variables
to close as many backdoors as
possible in our diff-in-diff model?

4 / 32

Design-based identification

Use a special situation to isolate arrow

RCTs

Use randomization
to remove confounding

RCT DAG
5 / 32

Design-based identification

Use a special situation to isolate arrow

RCTs

Use randomization
to remove confounding

RCT DAG

Difference-in-differences

Use before/after & treatment/control
differences to remove confounding

Diff-in-diff DAG
5 / 32

How does moving time back
let us check for parallel trends?
'

6 / 32
Mastering Metrics Figure 5.4
7 / 32

Can you conduct diff-in-diff
with a binary outcome?

8 / 32

I keep reading about estimates, estimands, and estimators.
What are these and are they the same thing?

9 / 32

Estima(and|or|ate)s

Estimand

Theoretical thing you want to know (β)

Estimator

Process for guessing the thing (e.g., diff-in-diff with interaction term)

Estimate

The guess (β-hat)

10 / 32
Estimandateor
11 / 32
Estimand methods
12 / 32
Estimand flowchart
13 / 32
Three-step process
14 / 32

Final project

15 / 32

Tell us more about
the final project!

16 / 32

Simple diff-in-diff

17 / 32

Minimum legal drinking age

18 / 32

MLDA reduction

Two states: Alabama vs. Arkansas

Mortality = β0+β1 Alabama+β2 After 1975 + β3 (Alabama×After 1975)

19 / 32

Organ donations

Two states: California vs. New Jersey

Donation rate = β0+β1 California+β2 After Q22011 + β3 (California×After Q22011)

20 / 32

Two-way fixed effects
(TWFE)

21 / 32

Two states: Alabama vs. Arkansas

Mortality = β0+β1 Alabama+β2 After 1975 + β3 (Alabama×After 1975)

22 / 32

All states: Treatment == 1
if legal for 18-20-year-olds to drink

Mortality = β0+β1 Treatment+β2 State+β3 Year

23 / 32

Mortality = β0+β1 Alabama+β2 After 1975 + β3 (Alabama×After 1975)

vs.

Mortality = β0+β1 Treatment+β2 State+β3 Year

24 / 32

Mortality = β0+β1 Alabama+β2 After 1975 + β3 (Alabama×After 1975)

vs.

Mortality = β0+β1 Treatment+β2 State+β3 Year

vs.

Mortality = β0+β1 Treatment+β2 State+β3 Year +β4 (State×Year)

25 / 32
Mastering Metrics Table 5.2
26 / 32

Donation rate = β0+β1 California+β2 After Q22011 + β3 (California×After Q22011)

vs.

Donation rate = β0+β1 Treatment +β2 State+β3 Quarter

27 / 32

What about this
staggered treatment stuff?

See this

28 / 32

This is good for ethical reasons!

Blog post

What are random effects?

See this

29 / 32

Sensitivity analysis

30 / 32

How do we know when we've got
the right confounders in our DAG?

How do we solve the fact that
we have so many unknowns in our DAG?

31 / 32
OVB
32 / 32

Plan for today

2 / 32
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
oTile View: Overview of Slides
Esc Back to slideshow